跳到主要内容

数位 DP

本页面将简要介绍数位 DP。

引入

数位是指把一个数字按照个、十、百、千等等一位一位地拆开,关注它每一位上的数字。如果拆的是十进制数,那么每一位数字都是 0~9,其他进制可类比十进制。

数位 DP:用来解决一类特定问题,这种问题比较好辨认,一般具有这几个特征:

  1. 要求统计满足一定条件的数的数量(即,最终目的为计数);

  2. 这些条件经过转化后可以使用「数位」的思想去理解和判断;

  3. 输入会提供一个数字区间(有时也只提供上界)来作为统计的限制;

  4. 上界很大(比如 101810^{18}),暴力枚举验证会超时。

数位 DP 的基本原理:

考虑人类计数的方式,最朴素的计数就是从小到大开始依次加一。但我们发现对于位数比较多的数,这样的过程中有许多重复的部分。例如,从 7000 数到 7999、从 8000 数到 8999、和从 9000 数到 9999 的过程非常相似,它们都是后三位从 000 变到 999,不一样的地方只有千位这一位,所以我们可以把这些过程归并起来,将这些过程中产生的计数答案也都存在一个通用的数组里。此数组根据题目具体要求设置状态,用递推或 DP 的方式进行状态转移。

数位 DP 中通常会利用常规计数问题技巧,比如把一个区间内的答案拆成两部分相减(即 ans[l,r]=ans[0,r]ans[0,l1]\mathit{ans}_{[l, r]} = \mathit{ans}_{[0, r]}-\mathit{ans}_{[0, l - 1]}

那么有了通用答案数组,接下来就是统计答案。统计答案可以选择记忆化搜索,也可以选择循环迭代递推。为了不重不漏地统计所有不超过上限的答案,要从高到低枚举每一位,再考虑每一位都可以填哪些数字,最后利用通用答案数组统计答案。

中等 (500)